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Unprecedented Radical Cyclizations Cascade Scheme 1
Leading to Bicyclo[3.1.1]Heptanes. Toward a New
Generation of Radical Cascades

Stgphane Bogen, Louis Fensterbank, and Max Malacria*

Laboratoire de Chimie Organique 1 2a, X = SiMeg, 85%
de Synthse associ@u CNRS 2b, X =OH, 72%
Universite Pierre et Marie Curie (i) 1.BusgSnH, AIBN, PhH, A, 2. MeLi, X = SiMeg; Hy05, X = OH
4 place JussieuTour 44-54
Case 229, 75252 Paris, Cedex 05, France Scheme 2

Receied January 28, 1997

. . 1
One-pot reactions leading to complex molecular frameworks

with high stereocontrol and using readily available precursors
have become a very fruitful area of research in organic
synthesis. On the basis of cascades of radical cyclizations or
transition metal multicomponent cycloadditions, some recent
one-pot sequences have confirmed this interest and have

efficiently served in the synthesis of natural prodéetsd the 6-endo-trig g
elaboration of novel polycyclic ring systerhs.We have /
illustrated, over the last decade, how this quest for molecular
complexity from structurally simple precursors also allows the
discovery of uncommon molecular processes in radical organic
chemistry, such as 1,4-H transférsyclopropanation® 5-ende

trig cyclizations’ and herein a mixed hydrogen transfeadical
cyclization cascade leading to the bicyclo[3.1.1]heptane frame-
work.

While exploring the potentialities of the recently reported
radical 5endetrig cyclization of (bromomethyl)dimethylsilyl
etherg in the construction of polycyclic frameworks, we BuzSnD : 2¢ (71%)
observed that when silyl ethek was submitted to radical
cyclization conditions, bicyclo[3.1.1]heptai2a was obtained tive 6-endotrig cyclization? from the -face, minimizing the
after treatment with methyllithium in 85% yield as a single 1,3 interactions between tigemdimethyl andso-propyl groups
diastereomer (Scheme 1). The structure and stereochemistryin a pseudoboat transition state (intermediédews 48, R =
of the bicyclo[3.1.1]heptane derivative were fully established i-Pr, Scheme 3). This leads presumably to cyclohexyl radical
by an X-ray analysis o2b,® obtained after Tamao oxidation. 5Beq (R= i-Pr) bearing the acetylenic chain in a pseudoequa-

Clearly, this reaction that consumes the two acetylenic torial position on the less-occupied-face. However, no
moieties to create three carbecarbon bonds and three new stannane reductiorsynto atert-butyl or aniso-propyl group)
stereogenic centers in a bridged bicyclic structure involves a or a 4exodig cyclization orienting theert-butyl group in an
novel type of cascade. After an initialéxcdig cyclization, axial position seems possible. Rather, equilibratiof3ax (R
the resulting vinyl radicaB undergoes a 1,6-H transfer at the = i-Pr) via 4Bax now places the acetylenic partner in a
expense of an entropicaflyand statistically more favorable  particularly favorable pseudoaxial position for a furtheext
1,5-H transfef on theiso-propyl group (Scheme 2). StabiliZ&d dig cyclizatior!® that achieves the construction of the bridged
propargyl radicaf 4 then follows a completely diastereoselec- bicyclic framework. The reversibility of the formation of
a-cyclobutyl radicals is well establish¥dand has been usually
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less efficient {5 + 16 46%), and cyclohexan&? is obtained
in 42% vyield as a single diastereomer, whose stereochemistry
was unambiguously determined by NOE analysis. Formation
_ of 17is ascribed to the stannane reduction of intermediéég],
—>E;°p>gsg3-‘-” anti to the tert-butyl group. This also confirms, our initial
assumption that the éndotrig pathway proceeds more easily
from 4pBeq to 55eq, placing the acetylenic moiety in the
pseudoequatorial position on the less-occupiethce. The
) . ) ) . large amount ofL7 should not be included in a measurement
to give stabilizetf a-silyl radical 7, as proven by the exclusive o he diastereoselectivity of theddotrig cyclization. Rather,
formation of2cwhen using tributyltindeuteride. No deuterium originates from a reversible éndotrig cyclization, for which
is observed on thexaomethylene moiety. This would constitute 5, intermolecular stannane reduction is possible.

to our knowledgehe first example of an unfarable cyclization
process, a 4-exo-dig ring closure, den by a hydrogen transfer.
Determining factors of this sequence have been investigated
notably focusing on the diastereoselectivity of thesr@lo
cyclization, and precursor8, 11, and 14 possessing less
sterically demanding groups than @o-propyl group were
examined (Scheme 4). As expected, replacingisoegropyl
group by an ethyl group reduced the diastereoselectivity of the
6-endacyclization, as two diastereome&dand10were obtained
in a 63:37 ratio from8. Major diastereome® presumably
results from the identical pathway that lead4 & and a minor
diastereomer would originate from thee®dotrig cyclization
on thea-face. Examination of molecular models indeed reveals
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It also appears that the substitution at the propargylic position Structure of2b, and NOE spectra of7 (18 pages). See any current
prevents any intermolecular reduction of tHesilyl radical, masthead page for ordering and Internet access instructions.
resulting from the 6endotrig cyclization. Thus, for the JA9702879
monosubstituted silyl ethdr, the 4exadig cyclization is much
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In summary, an unprecedented radical cascade mixing
hydrogen transfers and cyclizations in the ordex6dig, 1,6-H
‘transfer, 6endetrig, 4-exadig, and a final 1,6-H transfer allows
the efficient and diastereoselective assembly of strained bicyclo-
[3.1.1]heptanes. The driving force for the previously unknown
4-exodig cyclization is a hydrogen transfer. Clearly, this
initiates a new generation of radical cascades in which designed
translocations of radicals through hydrogen trandfecsuld
ensure particularly unfavorable cyclization processes. Further
studies will focus on the use of other unsaturated partners in
order to prepare bicyclo[3.1.1]heptanes of biological and
theoretical relevance.
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